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Brain metastases are the most common intracranial tumors in
adults and are associated with increased patient morbidity and
mortality. Limited therapeutic options are currently available for
the treatment of brain metastasis. Here, we report on the discov-
ery of an actionable signaling pathway utilized by metastatic
tumor cells whereby the transcriptional regulator Heat Shock
Factor 1 (HSF1) drives a transcriptional program, divergent from
its canonical role as the master regulator of the heat shock
response, leading to enhanced expression of a subset of E2F
transcription factor family gene targets. We find that HSF1 is
required for survival and outgrowth by metastatic lung cancer
cells in the brain parenchyma. Further, we identify the ABL2
tyrosine kinase as an upstream regulator of HSF1 protein expres-
sion and show that the Src-homology 3 (SH3) domain of ABL2
directly interacts with HSF1 protein at a noncanonical, proline-
independent SH3 interaction motif. Pharmacologic inhibition of
the ABL2 kinase using small molecule allosteric inhibitors, but
not ATP-competitive inhibitors, disrupts this interaction. Impor-
tantly, knockdown as well as pharmacologic inhibition of ABL2
using allosteric inhibitors impairs expression of HSF1 protein and
HSF1-E2F transcriptional gene targets. Collectively, these findings
reveal a targetable ABL2-HSF1-E2F signaling pathway required for
survival by brain-metastatic tumor cells.
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Brain metastases stemming from primary tumors of the lung
are a major health challenge for patients and often result in

devastating neurologic impairments and increased mortality
(1–3). Despite numerous studies focused on dissecting genetic
and nongenetic molecular mechanisms employed by metastatic
tumor cells to survive and colonize the unique microenvironment
of the brain (4–8), there is a lack of effective therapies to treat
this disease (9). Therefore, there is an urgent need to gain ad-
ditional insights into the mechanisms employed by metastasizing
tumor cells for colonization and survival in the brain, which
might lead to new rational approaches for pharmacologic
intervention.
The transcriptional activator Heat Shock Transcription Factor

1 (HSF1) is a master regulator of protein homeostasis (10, 11).
Under normal physiologic conditions, HSF1 monomers are held
inactive in the cytoplasm through intramolecular interactions
and a regulatory complex consisting of protein chaperones and
the chaperonin TCP1 ring complex (TRiC) (12–14). In response
to a diverse array of proteotoxic stresses including heat shock,
monomeric HSF1 sheds its inhibitory regulatory complex,
translocates to the nucleus, and oligomerizes into transcription-
ally active HSF1 trimers (10, 15–17). Active HSF1 then induces
transcription of genes encoding molecular chaperones by binding
to DNA motifs known as heat shock elements (HSEs) (16).
Although the role of HSF1 in the context of protein homeostasis
is well established, an emerging body of evidence in recent years
has shown that HSF1 also functions to drive transcriptional
programs implicated in tumor progression and malignancy

independent of the canonical heat shock response (18–25).
Previous work identified a divergent cancer-specific transcrip-
tional program driven by HSF1 in highly malignant mammary
epithelial cells and tumor cell lines from the lung, breast, and
colon (18). Central to this work was the discovery that genome
occupancy of HSF1 in the context of tumor malignancy is distinct
from that of heat shock and drives expression of target genes
implicated in cell cycle, translation, and DNA repair. More re-
cently, HSF1 expression was also identified in T cell acute lym-
phoblastic leukemia as critical for tumor cell survival by
regulating NOTCH1 transcriptional activity (19). Although these
studies provide evidence in support of heat shock-independent
functions of HSF1, little is known regarding the upstream
modulators of HSF1 protein expression as well as the role of
HSF1-driven transcriptional programs in the context of tumor
metastasis.
In Caenorhabditis elegans, HSF1 was recently shown to func-

tion with E2F transcription factors to drive a transcriptional
program required during larval stages of development, inde-
pendent of its role in the cellular response to heat shock and
proteotoxic stress (26). In this context, HSF1 binds DNA at
“degenerate” heat shock elements adjacent to GC-rich E2F
binding domains. We now show that HSF1 protein levels are
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up-regulated in brain-metastatic lung cancer cells and that HSF1
regulates expression of E2F gene targets in this setting. Genetic
inhibition of HSF1 ablates E2F target gene expression and
dramatically impairs survival of lung cancer brain metastases both
in vitro and in mouse models.
Because therapeutic targeting of transcription factors such as

HSF1 and E2F is challenging, we sought to identify actionable
upstream regulators of this HSF1-E2F transcription network.
We recently characterized a TAZ-AXL-ABL2 feed-forward
signaling axis that is activated in brain-metastatic lung cancer
cell lines and which is required for successful colonization of
these cells in the brain (27). We now show that ABL2 modulates
expression of the HSF1 and E2F transcription factors and that
knockdown or allosteric inhibition of ABL2 impairs expression
of HSF1-dependent and E2F-dependent transcription programs.
We report that HSF1 protein is up-regulated in brain-metastatic
cancer cells downstream of the ABL2 tyrosine kinase and is re-
quired for their survival both in vitro and in vivo. Importantly, we
show that HSF1-E2F target gene expression is pharmacologically
targetable with ABL kinase allosteric inhibitors (27). These data
support a critical role for an actionable ABL2-HSF1-E2F path-
way in promoting brain metastasis.

Results
Expression of HSF1 Is Up-Regulated in Brain-Metastatic Lung
Adenocarcinoma Cells. HSF1 expression was previously shown to
be up-regulated during progression of normal epithelial cells
toward a malignant, tumorigenic state (18). Thus, we questioned
whether HSF1 might be differentially expressed in brain-
metastatic cells compared to the parental tumor cell lines from
which they were derived. Immunoblot analysis of HSF1 protein
expression in EGFR mutant (PC9 and HCC4006) and KRAS
mutant (H2030) human lung adenocarcinoma cells compared to
their respective brain-metastatic variants PC9-BrM3, HCC4006-
BrM, and H2030-BrM3, revealed elevated levels of HSF1 pro-
tein in the brain-metastatic derivatives (Fig. 1A). Further, im-
munofluorescence staining of PC9-BrM3 cells revealed high
levels of HSF1 in the nucleus, indicative of transcriptionally
active HSF1 (Fig. 1B).
HSF1 was previously shown to be essential for T cell acute

lymphoblastic leukemia cell survival (19). Therefore, we sought
to investigate whether the elevated expression of HSF1 in brain-
metastatic cells was required for their survival and growth. To
examine this possibility, we transduced cells with doxycycline
(dox)-inducible lentiviral short hairpin RNAs (shRNAs) against
either nontargeting control (shNTC) or HSF1 and measured cell
viability across multiple time points after induction of shRNA
expression. Immunofluorescence and immunoblot analysis
demonstrated the effectiveness of HSF1 knockdown (Fig. 1 B
and C). Knockdown of HSF1 with multiple shRNAs resulted in a
robust decrease in cell viability starting 48 h post-shRNA in-
duction, which correlated with the loss of HSF1 protein
(Fig. 1 C–E and SI Appendix, Fig. S1 A–E). This loss corre-
sponded with an increase in G2/M cell cycle arrest as revealed by
FACS analysis (SI Appendix, Fig. S1A) and decreases in Cyclin
B1 protein expression (Fig. 1C). Knockdown of HSF1 also
resulted in increased levels of cleaved PARP, indicative of ap-
optotic induction (Fig. 1C). Parental lung cancer cells exhibited
decreased survival upon HSF1 knockdown, but to a lesser extent
than the brain-metastatic variants (Fig. 1 D and E and SI Ap-
pendix, Fig. S1 B–E). These data show that brain-metastatic lung
cancer cells are highly dependent on HSF1 for growth
and survival.

HSF1 Knockdown Impairs Metastatic Outgrowth and Tumor Cell
Survival In Vivo. Given that loss of HSF1 robustly impairs sur-
vival of brain-metastatic lung cancer cells in vitro, we next
evaluated whether HSF1 expression might be required during

metastatic colonization and outgrowth of lung cancer cells in an
in vivo model of brain metastasis. To examine this hypothesis, we
performed intracardiac injections of PC9-BrM3 cells transduced
with dox-inducible tet-shNTC or tet-shHSF1 shRNAs and
coexpressing a luciferase-Tomato (pFuLT) lentiviral reporter.
Mice were injected with brain metastatic PC9-BrM3 cells in the
left cardiac ventricle and, after assessing colonization of the
brain at day 10 postinjection with bioluminescent imaging (BLI),
mice were administered 3 mg/mL dox water to induce shRNA
expression. The 10-d time point was selected as previous studies
have shown that metastasizing tumor cells in circulation com-
plete extravasation into the brain parenchyma within 7 d post-
injection (7, 28). We found that the growth rate of metastases in
mice injected with PC9-BrM3 cells expressing shRNA against
HSF1 was markedly impaired compared to mice injected with
nontarget shRNA control cells (Fig. 1F). Metastatic disease
burden within the brain was significantly decreased in the HSF1
knockdown group as measured 1 mo after induction with dox
water (Fig. 1G). The rate of whole-body metastatic burden was
similarly delayed in the HSF1 knockdown cells (Fig. 1 H and I).
Together, these results show that HSF1 is necessary for the
colonization and outgrowth of metastatic tumor cells in an
in vivo model of lung cancer brain metastasis. Notably, analysis
of human lung adenocarcinoma patient microarray datasets
correlating messenger RNA (mRNA) expression with patient
survival showed that high expression of HSF1 correlates with
poor overall survival (Fig. 1J).

HSF1 Regulates Transcriptional Expression of E2F Gene Targets in
Brain-Metastatic Lung Cancer Cells in a Heat Shock-Independent
Manner. To investigate the mechanism by which HSF1 pro-
motes survival of metastatic lung cancer cells, we employed un-
biased transcriptional profiling of these cells with or without
HSF1 knockdown in order to gain insights into the transcrip-
tional target gene signatures altered by loss of HSF1. We per-
formed RNA-sequencing (RNA-seq) on PC9-BrM3 cells
transduced with dox-inducible nontarget control shRNA or
shHSF1 constructs and treated with dox for 48 h, a time point at
which HSF1 protein is depleted but prior to loss in cell viability
observed at longer time points (Fig. 1 C and D). Gene set en-
richment analysis (GSEA) was used on an expanded list of gene
signatures from the mSigDB database from The Broad Institute
to identify pathways affected by HSF1 loss (29). The signatures
most depleted upon HSF1 knockdown corresponded to E2F
family gene targets and G2/M cell cycle checkpoint targets,
consistent with the observed increase in G2/M cell cycle arrest
(SI Appendix, Figs. S1A and S2 A–C and Fig. 2 A–C) and loss of
Cyclin B1 expression upon HSF1 knockdown (Fig. 1C). Inter-
estingly, signatures related to the unfolded protein response,
while slightly depleted under knockdown conditions, scored
relatively poorly despite the known role for HSF1 in this process
(Fig. 2A). Similarly, expression of gene targets representative of
a canonical heat shock response remained relatively stable de-
spite HSF1 depletion in these cells (Fig. 2D). A list of conserved
E2F target genes from a number of E2F gene signatures iden-
tified by GSEA, which we confirmed by RT-qPCR to be regu-
lated by E2F family members, was used to generate an HSF1-
dependent E2F gene panel (Fig. 2D, upper bracket and SI Ap-
pendix, Fig. S2 D and E).
We next reasoned that if HSF1 promoted transcription of a

subset of E2F target genes, then expression of these target genes
might also be increased in brain-metastatic cells expressing high
HSF1 levels relative to parental cells. RNA-seq analysis and
GSEA comparing PC9-BrM3 cells with PC9 parental cells
revealed enrichment for E2F target gene expression as well as
G2/M checkpoint targets in the PC9-BrM3 cells (Fig. 3A and SI
Appendix, Fig. S3 A–C). RT-qPCR analysis was used to validate
increased expression of the HSF1-E2F gene panel in PC9-BrM3
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Fig. 1. HSF1 protein is up-regulated in brain-metastatic lung adenocarcinoma cells and is required for cell survival in vitro and colonization of the brain
in vivo. (A) Immunoblot analysis of HSF1 protein expression in parental vs. brain-metastatic lung adenocarcinoma (LUAC) cell lines. Protein quantification data
for brain-metastatic lines were normalized to actin loading control and corresponding parental cell line expression. (B) Immunofluorescence staining and
imaging of HSF1 protein (red) in PC9-BrM3 cells transduced with dox-inducible lentiviral shRNAs against nontarget control (shNTC) or HSF1 (shHSF1 7480).
Dapi, nuclear stain (blue). (C) Immunoblot analysis of HSF1 protein expression in PC9-BrM3 cells transduced with distinct dox-inducible shRNA clones targeting
HSF1 (7480 or 7481) and treated ± 500 ng/mL dox for the indicated timepoints (H). Protein quantification data were normalized to actin loading control and
to corresponding 0 h (untreated) timepoint. (D and E) Cell-Titer Glo assay measuring cell viability in PC9 parental vs. PC9-BrM3 cells transduced with shRNAs
against nontarget control or HSF1 clone 7480 (D) or clone 7481 (E) and treated with dox for the indicated timepoints. For all experiments, n = 3 biological
replicates per condition. Statistical analysis performed by two-way ANOVA followed by Fisher’s multiple comparison post hoc testing. *P < 0.05; **P < 0.01;
****P < 0.001; ns, not significant. Representative BLI (F) and quantification of brain metastasis burden (G) in mice injected with PC9-BrM3 cells transduced
with dox-inducible shRNAs against nontarget control (NTC) or HSF1 (clone 7480). Mice were treated with 3 mg/mL dox water for shRNA induction starting
on day 10 postintracardiac injection. After 28 d on dox water, mice were subjected to BLI analysis. Statistical analysis performed by unpaired two-tailed t test.
*P < 0.05. (H and I) Individual spider plots (H) and quantification (I) of whole-body metastatic burden in mice as described in Fig. 1 F and G. Statistical analysis
was performed using a mixed-effects model in GraphPad Prism 8 software to account for missing values due to premature animal death. **P < 0.01. (J)
Kaplan–Meier survival analysis correlating overall survival with mRNA expression of HSF1 in human lung adenocarcinoma patients. Survival groups were
separated by tertile based on mRNA expression (n = 720 total patients), and statistical analysis was performed using log-rank Mantel–Cox test.
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and HCC4006-BrM cells relative to parental PC9 and HCC4006
cells, respectively (Fig. 3 B and C). Notably, RT-qPCR analysis
also revealed that E2F family members themselves were differ-
entially expressed in brain-metastatic cells with increased ex-
pression of E2F1, E2F2, E2F7, and E2F8, whereas expression of
other E2F family members remained unchanged (SI Appendix,
Fig. S3D). Further, immunoblot analysis of brain-metastatic cells
revealed enrichment of E2F1 and E2F8 relative to the varied
expression of other E2F family members, implying a potential
role for E2F1 and E2F8 in regulating expression of E2F target
genes in this system (Fig. 3D and SI Appendix, Fig. S2 D and E).
Of note, analysis of human lung adenocarcinoma patient
microarray data revealed that high expression of E2F1 and E2F8
was each individually correlated with poor overall survival (SI
Appendix, Fig. S3 E and F). Taken together, these data show that
loss of HSF1 in brain-metastatic lung cancer cells results in de-
creased expression of select E2F target genes with minimal im-
pact on expression of canonical heat shock gene targets.
HSF1 was recently shown to function with E2F transcription

factors in C. elegans to drive a developmental transcriptional
program divergent from the canonical heat shock response (26).
Central to this work was the observation that in the context of
development, HSF1 occupies genomic loci containing a “de-
generate” or partial HSE nearby E2F DNA binding motifs. The
canonical DNA element recognized by trimeric HSF1 in re-
sponse to heat shock consists of triple tandem inverted nGAAn
repeats (e.g., nTTCnnGAAnnTTCn or derivations thereof) (11).
E2F family members bind DNA sequences at GC-rich motifs

consisting of TTTnnCGC (where “n” is either C or G) (SI Ap-
pendix, Fig. S4A) (30). Given that loss of HSF1 impairs mRNA
expression of E2F family target genes in brain metastatic cells,
we hypothesized direct HSF1 binding may occur at degenerate
HSEs located near promoter regions of known E2F transcrip-
tional targets. To investigate this possibility, we analyzed the
promoter regions of various E2F targets from the E2F target
gene panel and found TTTnnCGC motifs upstream of their re-
spective transcriptional start sites (SI Appendix, Fig. S4 B–D).
We then searched for partial permutations of the canonical HSE
sequence containing varying segments of this DNA motif (SI
Appendix, Fig. S4A). We detected a significant number of pre-
dicted degenerate HSEs, which were primarily found immedi-
ately downstream of the E2F binding motif and upstream of the
transcriptional start site, consistent with the report of E2F-HSF1
coregulated DNA binding in C. elegans (SI Appendix, Fig.
S4 B–D). In contrast, analysis of the promoter regions of
HSP90AB1 and HSPA6, both known target genes of HSF1 dur-
ing the canonical heat shock response, showed the presence of
expected canonical HSEs upstream of the TSS (SI Appendix, Fig.
S4 E and F), but no E2F DNA binding motifs were found near
the transcriptional start sites of HSP90AB1 and HSPA6. Im-
portantly, chromatin immunoprecipitation (ChIP)-qPCR analy-
sis in PC9-BrM3 and HCC4006-BrM cells revealed empirically
that HSF1 occupancy is enriched at predicted degenerate HSEs
upstream of E2F target genes (Fig. 3 E and F). Collectively,
these findings reveal the presence of degenerate HSF1-binding
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GSEA plots showing E2F targets (B) or G2/M checkpoint signatures (C) depleted in PC9-BrM3 Tet-shHSF1 knockdown cells. (D) Heatmap depicting relative
expression of the E2F target gene panel and representative heat shock gene panel.
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sequences, occupied by HSF1 and distinct from the canonical
HSE motif, near a subset of E2F transcriptional targets.

ABL2-Dependent Regulation of HSF1 Protein Expression in
Brain-Metastatic Lung Cancer Cells. Our data reveal that HSF1 is
required for survival of brain-metastatic cancer cells and suggest
that targeting of HSF1 could be exploited as a potential thera-
peutic strategy to treat this disease. The structure of HSF1 is not
readily amenable to inhibition by small molecules; however,
HSF1 expression and activity might be impaired through inhi-
bition of upstream HSF1 regulators. As our previous work (27)
showed that loss of ABL2 in lung cancer cells impaired brain
metastasis outgrowth, similar to the phenotype induced by loss of
HSF1 in vivo, we evaluated whether ABL2 might also regulate
HSF1 expression required for survival and colonization of brain-
metastatic cells. Notably, knockdown of ABL2 in PC9-BrM3
cells in vitro resulted in a near complete loss of measurable
HSF1, E2F1, and E2F8 proteins (Fig. 4A). Consistent with a heat
shock-independent role for HSF1 in brain metastasis, protein
expression of HSP90 was not altered by the loss of HSF1 induced

by ABL2 knockdown (Fig. 4A). Interestingly, reciprocal coimmu-
noprecipitation of endogenous HSF1 and ABL2 in PC9-BrM3 cells
showed a strong interaction between these two molecules (Fig. 4 B
and C). In contrast to HSF1, which shuttles between the cytoplasm
and the nucleus, ABL2 is a cytoplasmic protein and lacks a nuclear
localization sequence. Coimmunoprecipitation and immunoblot
analysis between nuclear and cytoplasmic fractions in cells
cotransfected with ABL2-GFP and Flag-tagged HSF1 (Flag-HSF1)
revealed that the interaction between these two molecules is re-
stricted to the cytoplasm (SI Appendix, Fig. S5A).
To characterize the interaction between ABL2 and HSF1, we

employed WT, kinase-inactive (K317M), SH2-inactive (R198K),
or SH3-inactive (P158L) ABL2-GFP–tagged proteins (Fig. 4D).
Cotransfection of GFP-tagged ABL2 WT or ABL2 mutant
proteins with His-tagged HSF1 followed by coimmunoprecipi-
tation assays revealed that expression of the ABL2 P158L mu-
tant resulted in a complete loss of the interaction with HSF1
(Fig. 4E). Further, GST in vitro pulldown assays of purified
His-HSF1 and GST-ABL2 SH2 or SH3-SH2 domains revealed
a direct interaction between HSF1 and ABL2 that is
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dependent on the presence of the ABL2 SH3 domain (SI
Appendix, Fig. S5B).
Reciprocally, to identify the region of HSF1 responsible for its

interaction with ABL2, we generated HSF1 truncation mutants
by site-directed mutagenesis (SI Appendix, Fig. S5C). Coimmu-
noprecipitation of the HSF1-truncated proteins in cells
cotransfected with ABL2-GFP revealed a loss in the interaction
between HSF1 and ABL2 upon removal of the LZ1-LZ3 do-
mains (amino acids 130–206) in the HSF1 1–129 truncation
mutant (SI Appendix, Fig. S5D). Curiously, this region of HSF1
lacks proline-rich sites that normally typify canonical SH3-
binding proteins, suggesting that a noncanonical SH3-binding
motif might mediate the interaction between HSF1 and ABL2.
To test this possibility, we generated 10-amino acid truncation
mutants of HSF1 from residues 166–206 to more precisely
identify the residues responsible for binding the SH3 domain of
ABL2. We found that the loss of residues spanning 187–195 of
HSF1 completely ablated the interaction between these two
molecules (SI Appendix, Fig. S5E). As recent work revealed that
SH3 domains can bind to proline-independent hydrophobic
motifs (31), we hypothesized that a hydrophobic six amino acid
KLIQFL motif spanning residues 188–193 of HSF1 (Fig. 4D)
might be responsible for the SH3-dependent interaction with
ABL2. Deletion of this domain in HSF1 del188-193 and
HSF1 del187-195 mutants ablated the interaction between HSF1
and ABL2 in cells (Fig. 4F). Furthermore, GST in vitro pulldown
assays with purified His-HSF1 WT, His-HSF1 del187-195, or
His-HSF1 del188-193 mutants in the presence of purified GST-
ABL2 SH3 protein revealed a complete loss in the interaction
between the ABL2 SH3 domain and the HSF1 deletion mutants
(Fig. 4G). Together these findings uncover an intermolecular

interaction between a noncanonical, proline-independent motif
of HSF1 with the ABL2 SH3 domain.

Allosteric Inhibition of the ABL Kinases Impairs HSF1-E2F Expression.
We previously showed that the BBB-penetrable allosteric in-
hibitor ABL001 (Asciminib) is effective in mouse models of
lung cancer brain metastasis (27). Thus, we examined if the
loss of HSF1 protein observed in ABL2 knockdown cells
was also induced by pharmacologic inhibition of the ABL2
kinase with ABL001. Treatment of HCC4006-BrM cells with
ABL001 resulted in a dose-dependent decrease in the ex-
pression of HSF1, E2F1, and E2F8 proteins, while expression
of HSP90 remained unchanged (Fig. 5A). Notably, inhibition
of the ABL kinases with ABL001 via oral gavage in mice
harboring established lung cancer brain metastases resulted
in near complete loss of HSF1 protein expression and
inhibited phosphorylation of the ABL kinase substrate CRKL
(Fig. 5B). ABL2-dependent regulation of HSF1 protein ex-
pression occurs posttranscriptionally, as RT-qPCR analysis of
PC9-BrM3 cells treated with ABL001 showed no measurable
change in HSF1 mRNA expression (SI Appendix, Fig. S6A)
and it is independent of the proteasome, as proteasomal in-
hibition with MG132 in cells treated with an ABL allosteric
inhibitor did not rescue HSF1 protein expression (SI Ap-
pendix, Fig. S6B).
ABL kinase inhibitors can be classified into two broad cate-

gories: 1) selective allosteric inhibitors that target the unique
myristate-binding pocket located within the ABL kinase (SH1)
domain and 2) ATP-competitive inhibitors that bind to the cat-
alytic site within the kinase domain and target not only ABL but
several other tyrosine kinases (32). Notably, comparison of ABL
allosteric inhibitors (GNF5, ABL001) with ATP-competitive
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inhibitors (Nilotinib, Imatinib, and Dasatinib) revealed that cells
treated with the ABL allosteric inhibitors exhibited a profound
loss in HSF1, E2F1, and E2F8 proteins relative to ATP-competitive
inhibitor treatment (Fig. 5C). Expression of CDC6, an HSF1-E2F
target gene, was preferentially decreased by the ABL allosteric in-
hibitors, whereas expression of HSP90 was not affected by any of
the inhibitors tested (Fig. 5C). Similar to HSF1 knockdown, treat-
ment with the ABL allosteric inhibitor GNF5 resulted in loss of
Cyclin B1 expression as well as a robust increase in cleaved PARP
levels that were not observed by treatment with Nilotinib (Fig. 5D).
These findings are consistent with published data showing that
in contrast to ABL allosteric inhibitors, the ATP-competitive
inhibitors elicit ERK activation in lung cancer cells and other
tumors (33). Notably, coimmunoprecipitation and immuno-
blot analysis of Flag-HSF1 cotransfected with ABL2-GFP in
cells treated with either an allosteric or ATP-competitive in-
hibitor revealed a complete loss in the interaction between
HSF1 and ABL2 only under allosteric inhibition (Fig. 5E).
Structural studies revealed striking differences in ABL kinase
conformation and activity states under ATP-competitive–
inhibited vs. allosteric-inhibited conditions (34). In line with

these findings, our work suggests that, in contrast to ATP-
competitive inhibition, allosteric inhibition of the ABL2 kinase
results in an inactive state wherein the ABL2 SH3 domain is
sterically inaccessible to binding with SH3-interacting proteins
such as HSF1 (Fig. 5F). Collectively, our results show that in
contrast to the ATP-competitive inhibitors, the ABL allosteric
inhibitors phenocopy the effects of ABL2 knockdown and
might be used to disrupt HSF1-E2F transcription in brain-
metastatic lung cancer cells. In this regard, PC9-BrM3 and
HCC4006-BrM cells treated with ABL001 exhibited profound
decreases in mRNA expression of the HSF1-E2F target gene
panel (Fig. 5 G and H). Together, these results demonstrate
that HSF1-E2F transcription networks can be pharmacologi-
cally targeted with ABL kinase allosteric inhibitors.

An HSF1-E2F Transcriptional Signature is Up-Regulated in Lung
Adenocarcinoma Patients and Is Predictive of Poor Survival. To
evaluate whether the HSF1-E2F target gene signature is clini-
cally relevant, we analyzed patient datasets to determine if
HSF1-E2F target gene expression is predictive of patient survival
outcomes. Analysis of microarray-based mRNA expression
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correlated to overall patient survival data revealed that high
expression of the HSF1-E2F–coregulated target genes ATAD2,
CDC6, PRKDC, RANBP1, MCM2, MCM3, MCM4, and MCM7
each individually were predictive of significantly poorer overall
survival in lung adenocarcinoma patients (Fig. 6 A–H). In ad-
dition, analysis of TCGA datasets for lung adenocarcinoma
showed that high expression of the HSF1-E2F target gene

signature co-occurred in the same patients, and mutual exclu-
sivity analysis showed high co-occurrence for almost all gene
pairs tested from the HSF1-E2F gene panel (Fig. 6 I and J).
Collectively, these data provide supporting evidence for an
HSF1-E2F–coregulated transcriptional gene signature that may
be clinically relevant as a prognostic marker for patient survival
in lung adenocarcinoma (Fig. 6K).
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Discussion
While HSF1 has been shown to support initiation and progres-
sion of distinct types of primary tumors, little is known regarding
the role of HSF1 during metastasis (18, 20, 22). We now show
that brain-colonizing lung cancer cells up-regulate expression of
HSF1 and that loss of HSF1 in these cells results in dramatic
decreases in cell survival in vitro and metastatic burden in vivo.
Additionally, our data show that the transcriptional response
driven by HSF1 is strikingly divergent from its canonical role as
the master regulator of the heat shock response. Unbiased
transcriptomic profiling comparing brain-metastatic and parental
cell lines reveals significant enrichment of E2F transcription
family gene signatures in brain-metastatic cells whose expression
is dependent on HSF1. Previous work in C. elegans revealed an
HSF1-E2F transcriptional program is required during develop-
ment, whereby HSF1 binds DNA at promoter regions of E2F
target genes in a heat shock-independent manner (26). Similarly,
analysis of promoter regions for predicted HSF1-E2F–coregulated
genes in human cells revealed the presence of “degenerate” HSEs
downstream of E2F DNA-binding motifs which were confirmed
empirically to be occupied by HSF1, thus supporting the hypothesis
that HSF1 is a cofactor required for expression of these E2F gene
targets in metastatic lung cancer cells. Importantly, analysis of hu-
man patient data revealed that high expression of an HSF1-E2F
transcriptional signature co-occurs in patient populations with poor
survival outcomes, suggesting that an HSF1-E2F target gene panel
may hold prognostic value in patients with aggressive metastatic
disease. Future studies comparing samples of paired patient primary
tumors and corresponding brain metastases should be undertaken
to evaluate whether HSF1 protein expression and an HSF1-
E2F–coregulated transcription network may be relevant to pro-
gression in this disease setting. Furthermore, the importance of
HSF1 activation and E2F-coregulated transcription in extracranial
metastasis merits further investigation.
The ABL kinases, ABL1 and ABL2, function downstream of

known HSF1 activators including EGFR, HER2, and RAS (20,
33, 35–38). Additionally, the ABL kinases regulate expression
and activity of multiple factors that function as HSF1 tran-
scriptional coregulators, including E2F1 (39–41). Recent work by
our laboratory uncovered a critical role for the ABL2 kinase in
the regulation of a TAZ-dependent transcriptional network re-
quired for the early colonization of lung cancer brain metastases
(27). We now show that the SH3 domain of ABL2 forms a
complex with a hydrophobic KLIQFL motif located within the
LZ1-3 domains of HSF1, and knockdown of ABL2 results in
impaired expression of HSF1, E2F1, and E2F8 proteins in brain-
metastatic lung cancer cell lines. Notably, we found that phar-
macologic inhibition of the ABL kinases using selective ABL
allosteric inhibitors, but not ATP-competitive inhibitors, ablates
the physical interaction between ABL2 and HSF1, results in
markedly decreased expression of HSF1, E2F1, and E2F8 pro-
teins in brain-metastatic lung cancer cells, and results in deple-
tion of HSF1-E2F transcriptional targets. These findings
highlight potential differences affecting intramolecular and in-
termolecular protein–protein interactions induced by allosteric
versus ATP-competitive kinase inhibitors that might have im-
portant therapeutic implications. Importantly, the targetable
nature of the ABL2-HSF1-E2F signaling network identifies ABL
allosteric inhibitors as a potentially effective therapy for the
treatment of metastatic lung cancers characterized by high ex-
pression of HSF1.

Materials and Methods
Additional experimental details and methods are provided in SI Appendix,
including procedures for RNA-seq analysis, real-time PCR analysis, immuno-
blotting, immunofluorescence, and patient survival analysis. RNA sequenc-
ing raw data have been deposited in the National Center for Biotechnology
Information Gene Expression Omnibus (GEO) under accession no. GSE149246.

Cell Lines and Cell Culture. Human non-small cell lung cancer (NSCLC) cell lines
HCC4006 and H1975 were purchased from American Type Culture Collection
(ATCC). PC9 parental, H2030 parental, and H2030-BrM3 cells were a gift
from Joan Massagué (Memorial Sloan Kettering Cancer Center, New York,
NY). PC9-BrM3 and HCC4006-BrM cell lines were derived in the A.M.P. lab-
oratory by serial intracardiac injection as described in the following section.
Parental and derivative cell line pairs were subjected to short tandem repeat
profiling through the Duke University DNA Analysis Facility Human cell line
authentication service to confirm their authenticity. NSCLC lines were
maintained in RPMI 1640 (Life Technologies) supplemented with 10%
tetracycline-screened fetal bovine serum (FBS, HyClone), 10 mM Hepes,
1 mM sodium pyruvate, and 0.2% glucose. H293T cells used for transfection
and virus production were purchased from ATCC and were maintained in
DMEM (Life Technologies) with 10% FBS (Corning). All cultures were main-
tained at 37 °C in humidified air containing 5% CO2. In studies employing
the use of dox-inducible constructs, the dose of dox (Millipore Sigma) was
determined empirically.

For experiments assessing effects of pharmacologic inhibitors in vitro
(GNF5, ABL001, Nilotinib, Dasatinib, Imatinib), drugs were dissolved in DMSO
with the final concentration of DMSO in culture media not exceeding 0.1%
vol/vol. The proteasomal inhibitor MG132 (Sigma) was dissolved in DMSO for
use in cell-based in vitro assays. Inhibitors were synthesized by the Duke
University Small Molecule Synthesis Facility and were validated by liquid
chromatography–mass spectrometry and 1H-NMR techniques in addition to
cell-based assays confirming effects on both cell viability (Cell-Titer Glo) and
kinase target inhibition (Western blot).

Intracardiac Injection. All animal studies were performed in accordance with
protocols approved by the Duke University Division of Laboratory Animal
Resources Institutional Animal Care and Use Committee. PC9-BrM3 cells
transduced with a stable pFU-luciferase-Tomato (pFuLT) lentiviral vector in
addition to shRNA constructs as described in figure legends were injected
intracardially, and mice were subsequently monitored in vivo using an IVIS
XR bioluminescent imager to confirm both proper anatomical injection as
well as to monitor for metastatic disease progression. Eight- to 12-wk-old
age-matched female athymic nu/nu mice were used for all studies (Jackson
Laboratory). Mice were anesthetized with 5% isoflurane prior to injections.
For all studies, 4 × 105 lung cancer cells suspended in 100 μL of PBS were
injected into the left cardiac ventricle with a 30-gauge needle and animals
were monitored until full recovery from anesthesia.

ABL001 (Asciminib) was used to pharmacologically inhibit the ABL kinases
in tumor-bearing mice in vivo and was prepared as a suspension in sterile
0.5% methylcellulose/0.5% Tween-80 as described previously (42). To eval-
uate the pharmacologic effects of ABL001 on ABL kinase activity and
downstream signaling in brain metastases in vivo, mice were injected with
H1975 pFulT lung cancer cells and metastatic burden was allowed to prog-
ress over the span of 1 mo. Mice with established brain metastases were
administered either vehicle or 100 mg/kg ABL001 via oral gavage at 3, 12,
and 24 h prior to euthanasia and tissue harvest. Immediately following eu-
thanasia, mouse brains were freshly dissected and tissue sections with visible
brain metastases were excised and lysed in RIPA buffer containing protease-
phosphatase inhibitor mixture (Cell Signaling). Harvested samples were
digested for 15 min on a rotator at 4 °C followed by centrifugation for
15 min at 4 °C to clear the lysate of myelin and cell debris. Protein lysates
were temporarily stored at −20 °C prior to immunoblotting.

Derivation of Brain-Metastatic Lung Cancer Cell Lines. Derivation of brain-
metastatic cell lines was performed as described previously (5). Eight- to
12-week-old athymic nude mice were injected intracardially with either PC9,
HCC4006, or H1975 parental cell lines (4 × 105 cells per injection) and were
monitored for metastatic progression using an IVIS XR bioluminescent im-
ager. Approximately 30 d postintracardiac injection, subsets of mice pre-
senting with advanced brain metastases were euthanized and whole brains
were collected, minced, and digested in RPMI culture medium supplemented
with 0.125% collagenase III and 0.1% hyaluronidase. Cells suspended in di-
gestion media were then placed on a rotator for 4–5 h at room temperature.
Following incubation, cells were centrifuged and resuspended in 0.25%
trypsin for 10 min at 37 °C, followed by resuspension in culture media
containing 1× Anti-Anti (Thermo Fisher). Cell lines were expanded to near-
confluence in culture prior to sorting for Tomato-positive cells for future
experimental use.

Statistical Analysis. Statistical analyses were performed using GraphPad Prism
8 software. Mouse numbers per group were determined through statistical
power calculations (α = 0.05) where 10 mice per group allows for 90% power
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to detect intergroup differences of 50% and assuming intragroup variability
of 25%. For Kaplan–Meier survival analysis, P values were calculated using
log-rank (Mantel–Cox) testing. Statistical comparisons of two groups were
conducted using Student’s t tests (unpaired, two-tailed). For comparisons
involving more than two groups, data were evaluated by ANOVA followed
by post hoc testing as described in figure legends. Post hoc testing was
performed only when statistical significance was achieved from the ANOVA.
For comparisons between groups of unequal size, the mean value was used
to allow for statistical analysis by ANOVA. For all tests, we considered a P
value less than 0.05 as statistically significant. Data shown represent aver-
ages ± SEM unless otherwise indicated in figure legends.

Data Availability. Requests for resources and reagents found in this study
should be directed to and will be fulfilled by the corresponding author, A.M.P.
(ann.pendergast@duke.edu). All unique and stable reagents generated in this

study are available upon completion of a Materials Transfer Agreement.
RNA-seq data have been deposited in GEO (accession no. GSE149246).
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